Ученые из Саратова детально изучили то, как биополимерные покрытия влияют на свойства наночастиц, способных «выжигать» раковые опухоли, и выяснили, в каких случаях эта «упаковка» сильно меняет свойства. Их выводы были представлены в журнале Applied Materials Today.

В последние годы зарубежные и российские ученые все чаще пытаются применять различные наночастицы для борьбы с раком, инфекционными заболеваниями или для лечения неинфекционных болезней. Как правило, они используются в качестве своеобразных «контейнеров» для доставки очень опасных токсинов внутрь опухоли или очага инфекции.

В других случаях наночастицы сами по себе служат средством для удаления опухоли или «киллерами» микробов и вирусов. Они присоединяются к ним и выступают в качестве своеобразной «мишени», привлекающей внимание иммунных клеток, или же на них наводится излучение лазера, нагревающее частицы и сжигающее клетки, или магнитные поля.

Частицы второго типа работают очень хорошо, они уже достаточно давно используются для борьбы с меланомой и другими формами рака кожи в рамках так называемой «фотодинамической терапии». С другой стороны, ученые пока не до конца понимают, что управляет их нагревом и как его можно усилить или наоборот, ослабить.

В последние годы, как отмечают Николай Хлебцов и его коллеги из Института биохимии и физиологии растений и микробов РАН в Саратове, химики, медики и биологи начали активно изучать свойства композитных наночастиц, состоящих из металлического ядра и полимерной оболочки.

Подобные структуры можно использовать для уничтожения раковых клеток или бактерий сразу двумя путями или же для наблюдений за работой клеток и органов, если их нагрев и химическая активность будут достаточно низкими. Для достижения подобных целей ученые меняют толщину, химический состав и другие свойства полимерных оболочек, а также самих наночастиц.

Как передает пресс-служба Российского научного фонда, поддерживавшего работу ученых, недавно саратовские химики обратили внимание на один из самых перспективных материалов для подобных «многослойных» наночастиц, полидофамин, природный полимер, состоящий из молекул гормона счастья.

Десять лет назад зарубежные ученые случайно обнаружили, что оно представляет собой основу клея моллюсков, и выяснили, что его крайне «липкие» нити можно использовать для создания различных детекторов различных молекул или наночастиц, способных «приклеиваться» к определенным поверхностям и клеткам.

Российские ученые заметили, что этот перспективный материал, несмотря на его применение в бесчисленном множестве научных проектов и уже существующих медицинских расходных материалах, никогда не изучался с точки зрения того, как он может менять свойства наночастиц-«киллеров» раковых клеток.

Интереса добавляло и то, что полидофамин, в отличие от многих других полимеров, поглощает свет, а не рассеивает или отражает его, что может особым образом влиять на свойства наночастиц. Вырастив золотые наночастицы разных форм и размеров, Хлебцов и его команда проверили, как именно поменялись их свойства после покрытия аналогом «клея» моллюсков.

Как оказалось, полидофамин действительно вел себе не так, как покрытие из двуокиси кремния, инертного материала, которым обычно покрывают наночастицы для их защиты от окружающей среды и улучшения их свойств. Как правило, неогранический материал одинаковым образом меняет свойства наночастиц любых размеров и форм, чуть усиливая рассеяние света и смещая пик рассеяния в сторону красной части спектра.

Покрытие из «клея» моллюсков, как обнаружили российские ученые, ведет себя таким же образом для круглых наночастиц, но совершенно иначе для вытянутых структур. В их случае оно не усиливало, а ослабляло поглощение света, причем это происходило только для одного типа колебаний, возникавших на поверхности наночастиц при их взаимодействии со светом, но не для других.

Это свойство, как полагают ученые, характерно не только для полидофамина, но и для других покрытий, хорошо поглощающих свет. Данный эффект, как заключают ученые, следует учитывать при создании подобных структур и их использовании в медицинской и научной практике.

Имя | Name

ok

Поиск на Upakovano.ru

Поиск на сайте upakovano.ru является универсальным и осуществляется по всем разделам сайта, качество выдачи результатов поиска прямо зависит от введенных ключевых слов.

Использование только одного слова или общих слов может привести к излишнему количеству документов, в таких случаях нужно использовать уточняющие ключевые слова.

Для повышения релевантности результатов поиска можно также использовать исключающие слова.

При формировании поискового запроса возможно использование языка запросов.

Обычно запрос представляет из себя просто одно или несколько слов, например: “свежая рыба треска” — по такому запросу находится информация, в которой встречаются все слова запроса.

Логические операторы позволяют строить более сложные запросы, например: “свежая рыба или пылесос” — по такому запросу находится информация, в которой встречаются либо слова “свежая” и “рыба”, либо слово “пылесос”.

“Свежая рыба не скумбрия” — по такому запросу находится информация, в которой встречаются слова “свежая” и “рыба” и не встречается слово “скумбрия”.

Вы можете использовать скобки для построения более сложных запросов.

Логические операторы.

Оператор “и”

Синонимы оператора “и”:

And
&
+

Подразумевается, что оператор “и” можно опускать: например, запрос “свежая рыба” полностью эквивалентен запросу “свежая” и “рыба”.

Оператор “или”

Синонимы оператора “или”:

Or
|

Оператор логическое «или» позволяет искать элементы, содержащие хотя бы один из операндов.

Оператор “Не”

Синонимы оператора “Не”:

Not
~

Оператор логическое «не» ограничивает поиск товарами, не содержащими слово, указанное после оператора.

Оператор ( )

Круглые скобки задают порядок действия логических операторов. При формировании строки запроса убедитесь, что для каждой открывающейся скобки есть парная скобка закрывающаяся.

Оператор " "

Поиск точной фразы. Обычно используется для поиска цитат.