Исследователи разработали гибкую систему машинного обучения, способную самостоятельно распознавать товары на магазинных кассах или на весах в системах самообслуживания, а также быстро обучаться на небольших исходных наборах изображений. Об этом сообщила пресс-служба Сколтеха. Работа опубликована в открытом доступе в журнале IEEE Access.

«На кассах самообслуживания со встроенными весами покупателю нужно запоминать все коды, а проконтролировать, правильно ли покупатель взвешивает товар, достаточно сложно. Исследователи из Сколтеха предлагают упростить этот процесс с помощью системы компьютерного зрения PseudoAugment. Эту систему можно настроить даже до того, как новые сорта окажутся на полке магазина», — говорится в сообщении.

Систему разработала группа исследователей под руководством старшего преподавателя Сколтеха Андрея Сомова. Эта нейросеть анализирует снимки и ищет на них псевдообъекты: обособленные структуры, похожие на отдельные фрукты и другие товары, которые продаются в магазине.

Эти объекты вырезают из оригинального изображения и модифицируют, получая множество разных псевдообъектов. Это позволяет использовать их для обучения нейросети распознавать предметы с любого ракурса и при любых размерах и вариациях их формы. Подобный подход повышает качество работы нейросети и позволяет обучать ее без вмешательства человека на небольших наборах изображений, что выгодно отличает разработку российских ученых от конкурентов.

Работу системы проверили на прототипе кассы самообслуживания со встроенными весами и подключенной к ней компьютерной системой, позволяющей дообучать и переобучать нейросети. Используя этот набор, исследователи успешно обучили кассу распознавать ранее неизвестные сорта яблок с точностью 92% на основе небольшого числа фотографий ящиков с яблоками.

По словам ученых, сфера применения созданного ими алгоритма не ограничивается супермаркетами. Его можно использовать для обучения распознавания однородных объектов, в частности, на конвейерах для сортировки семян или твердых бытовых отходов. Это позволит повысить эффективность сортировочных промышленных установок, подытожили исследователи.

Имя | Name

ok

Поиск на Upakovano.ru

Поиск на сайте upakovano.ru является универсальным и осуществляется по всем разделам сайта, качество выдачи результатов поиска прямо зависит от введенных ключевых слов.

Использование только одного слова или общих слов может привести к излишнему количеству документов, в таких случаях нужно использовать уточняющие ключевые слова.

Для повышения релевантности результатов поиска можно также использовать исключающие слова.

При формировании поискового запроса возможно использование языка запросов.

Обычно запрос представляет из себя просто одно или несколько слов, например: “свежая рыба треска” — по такому запросу находится информация, в которой встречаются все слова запроса.

Логические операторы позволяют строить более сложные запросы, например: “свежая рыба или пылесос” — по такому запросу находится информация, в которой встречаются либо слова “свежая” и “рыба”, либо слово “пылесос”.

“Свежая рыба не скумбрия” — по такому запросу находится информация, в которой встречаются слова “свежая” и “рыба” и не встречается слово “скумбрия”.

Вы можете использовать скобки для построения более сложных запросов.

Логические операторы.

Оператор “и”

Синонимы оператора “и”:

And
&
+

Подразумевается, что оператор “и” можно опускать: например, запрос “свежая рыба” полностью эквивалентен запросу “свежая” и “рыба”.

Оператор “или”

Синонимы оператора “или”:

Or
|

Оператор логическое «или» позволяет искать элементы, содержащие хотя бы один из операндов.

Оператор “Не”

Синонимы оператора “Не”:

Not
~

Оператор логическое «не» ограничивает поиск товарами, не содержащими слово, указанное после оператора.

Оператор ( )

Круглые скобки задают порядок действия логических операторов. При формировании строки запроса убедитесь, что для каждой открывающейся скобки есть парная скобка закрывающаяся.

Оператор " "

Поиск точной фразы. Обычно используется для поиска цитат.