Ученые синтезировали прочный и долговечный материал на основе полимера и перовскитных нанокристаллов, испускающих зеленый свет. Светоизлучающие частицы синтезировали в сети ультратонких полимерных волокон, что обеспечило рекордную стабильность и яркость свечения композитного материала. Разработка может лечь в основу гибких дисплеев, носимых медицинских приборов и стабильных источников света.

Во многих современных системах освещения и дисплеях используются светодиоды. Для их эффективной работы и настройки (например, изменения спектра свечения с холодного на теплый) нужны материалы, преобразующие свет. Одни из перспективных соединений для этой задачи — перовскитные квантовые точки. Это нанокристаллы, излучающие очень чистый и яркий свет, спектром которого можно легко управлять. Однако перовскиты очень чувствительны к влаге и кислороду: под их воздействием такие материалы разрушаются и перестают светиться. Чтобы решить эту проблему, ученые пытаются «защитить» квантовые точки с помощью полимерной оболочки.

Исследователи из Саратовского национального исследовательского государственного университета имени Н.Г. Чернышевского (Саратов) с коллегами из Санкт-Петербургского национального исследовательского Академического университета имени Ж.И. Алферова РАН (Санкт-Петербург) и Университета ИТМО (Санкт-Петербург) синтезировали стабильные люминесцентные нетканые материалы на основе полимера фторопласта и перовскитных квантовых точек. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Journal of Semiconductors.

Авторы использовали технологию электроформования, которая позволяет одновременно создавать полимерное волокно и синтезировать в нем перовскитные квантовые точки. В качестве основы для материала ученые выбрали стабильный и прочный фторсодержащий полимер фторопласт. В раствор этого вещества добавили бромсодержащие соли цезия и свинца, на основе которых росли перовскитные нанокристаллы.

Полученную смесь поместили в камеру с высоким напряжением, под действием которого полимер приобрел форму тончайших переплетенных нитей. Кроме того, в этих же условиях из солей цезия и свинца сформировались квантовые точки диаметром от четырех до тринадцати нанометров, что в десятки раз меньше размеров вирусов.

С помощью электронного микроскопа авторы убедились, что светоизлучающие кристаллы перовскита равномерно распределились по всему объему волокна. При облучении ультрафиолетом материал испускал зеленый свет, при этом его яркость не уменьшилась даже спустя 2,5 года хранения образцов в лабораторных условиях. Ученые также определили, что, меняя время от приготовления раствора для синтеза до его обработки напряжением, можно управлять размером получаемых квантовых точек и спектром испускаемого ими света (от 507 до 517 нанометров).

«Нам удалось довольно простым способом синтезировать ярко светящиеся квантовые точки в защитной полимерной матрице, а также добиться сохранения их свойств на протяжении нескольких лет. Это будет способствовать практическому применению таких гибридных материалов в реальных устройствах: в гибкой электронике, например, носимых на коже медицинских устройствах, в преобразователях света, используемых в осветительных приборах. В дальнейшем мы планируем расширить свечение наших материалов на весь видимый спектр. Это позволит заложить основы для создания легких гибких дисплеев для умной одежды и аксессуаров», — рассказывает руководитель проекта, поддержанного грантом РНФ, Полина Демина, кандидат химических наук, старший научный сотрудник СГУ имени Н.Г. Чернышевского.

Имя | Name

ok

Поиск на Upakovano.ru

Поиск на сайте upakovano.ru является универсальным и осуществляется по всем разделам сайта, качество выдачи результатов поиска прямо зависит от введенных ключевых слов.

Использование только одного слова или общих слов может привести к излишнему количеству документов, в таких случаях нужно использовать уточняющие ключевые слова.

Для повышения релевантности результатов поиска можно также использовать исключающие слова.

При формировании поискового запроса возможно использование языка запросов.

Обычно запрос представляет из себя просто одно или несколько слов, например: “свежая рыба треска” — по такому запросу находится информация, в которой встречаются все слова запроса.

Логические операторы позволяют строить более сложные запросы, например: “свежая рыба или пылесос” — по такому запросу находится информация, в которой встречаются либо слова “свежая” и “рыба”, либо слово “пылесос”.

“Свежая рыба не скумбрия” — по такому запросу находится информация, в которой встречаются слова “свежая” и “рыба” и не встречается слово “скумбрия”.

Вы можете использовать скобки для построения более сложных запросов.

Логические операторы.

Оператор “и”

Синонимы оператора “и”:

And
&
+

Подразумевается, что оператор “и” можно опускать: например, запрос “свежая рыба” полностью эквивалентен запросу “свежая” и “рыба”.

Оператор “или”

Синонимы оператора “или”:

Or
|

Оператор логическое «или» позволяет искать элементы, содержащие хотя бы один из операндов.

Оператор “Не”

Синонимы оператора “Не”:

Not
~

Оператор логическое «не» ограничивает поиск товарами, не содержащими слово, указанное после оператора.

Оператор ( )

Круглые скобки задают порядок действия логических операторов. При формировании строки запроса убедитесь, что для каждой открывающейся скобки есть парная скобка закрывающаяся.

Оператор " "

Поиск точной фразы. Обычно используется для поиска цитат.